Semi-supervised Dictionary Learning Based on Hilbert-Schmidt Independence Criterion

نویسندگان

  • Mehrdad J. Gangeh
  • Safaa M. A. Bedawi
  • Ali Ghodsi
  • Fakhri Karray
چکیده

In this paper, a novel semi-supervised dictionary learning and sparse representation (SS-DLSR) is proposed. The proposed method benefits from the supervisory information by learning the dictionary in a space where the dependency between the data and class labels is maximized. This maximization is performed using Hilbert-Schmidt independence criterion (HSIC). On the other hand, the global distribution of the underlying manifolds were learned from the unlabeled data by minimizing the distances between the unlabeled data and the corresponding nearest labeled data in the space of the dictionary learned. The proposed SS-DLSR algorithm has closed-form solutions for both the dictionary and sparse coefficients, and therefore does not have to learn the two iteratively and alternately as is common in the literature of the DLSR. This makes the solution for the proposed algorithm very fast. The experiments confirm the improvement in classification performance on benchmark datasets by including the information from both labeled and unlabeled data, particularly when there are many unlabeled data.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Semi-Supervised Kernel Matching for Domain Adaptation

In this paper, we propose a semi-supervised kernel matching method to address domain adaptation problems where the source distribution substantially differs from the target distribution. Specifically, we learn a prediction function on the labeled source data while mapping the target data points to similar source data points by matching the target kernel matrix to a submatrix of the source kerne...

متن کامل

A New Method for Speech Enhancement Based on Incoherent Model Learning in Wavelet Transform Domain

Quality of speech signal significantly reduces in the presence of environmental noise signals and leads to the imperfect performance of hearing aid devices, automatic speech recognition systems, and mobile phones. In this paper, the single channel speech enhancement of the corrupted signals by the additive noise signals is considered. A dictionary-based algorithm is proposed to train the speech...

متن کامل

Semi-Supervised Representation Learning based on Probabilistic Labeling

In this paper we present a new algorithm for semisupervised representation learning. The algorithm is based on assigning class probabilities to unlabeled data. The approach will use Hilber-Schmidt Independence Criterion (HSIC) to find a mapping which takes the data to a lower-dimensional space. We call this algorithm SSRL-PL. Use of unlabeled data for learning is not always beneficial and there...

متن کامل

Measuring Statistical Dependence with Hilbert-Schmidt Norms

We propose an independence criterion based on the eigenspectrum of covariance operators in reproducing kernel Hilbert spaces (RKHSs), consisting of an empirical estimate of the Hilbert-Schmidt norm of the cross-covariance operator (we term this a Hilbert-Schmidt Independence Criterion, or HSIC). This approach has several advantages, compared with previous kernel-based independence criteria. Fir...

متن کامل

Kernel Measures of Independence for non-iid Data

Many machine learning algorithms can be formulated in the framework of statistical independence such as the Hilbert Schmidt Independence Criterion. In this paper, we extend this criterion to deal with structured and interdependent observations. This is achieved by modeling the structures using undirected graphical models and comparing the Hilbert space embeddings of distributions. We apply this...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2016